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It is shown theoretically that a constant temperature can be maintained in the

active region of a semiconductor ;‘Jection iaser during the period of the radia-

tion pulse by regulating the pumping current.
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The problems of temperatu IL w
temperature of the surrounding medium changes were studied in {6,
pulsed laser the problem of maintaining an average but not instant
usually solved. At the same time, under conditions of pulsed pump
ture waves arise in the active region, and this results in spreadi
and could cause switching of the predominant modes. Thus for IL be
Gahs a displacement by the intermodal splitting occurs when the te
1 X [9]; this is comparable with the amplitude of oscillations of t
ture of the active region. Thus for a pulsed laser, in addition t
average temperature of the laser diode, there also arises the prob
of the active region during the period of the pumping pulse. In [
optimal control of the temperature of the active region T of a pu
by applying a preceding cooling pulse from the side of the outer f
{11] the suppression of heat waves in the active region of the IL i
regime was investigated theoretically.

We note that the methods of dynamic thermostatic control studied in [10, 11] do not
make it possible to achieve the condition T; = const exactly. In this connection, in {10,
11] the problems of reducing to a minimum the standard deviation of the function T4{(t) from
its average value over the period of the pumping pulse were solved. In reality, however,
it is precisely accurate control of the temperature of the active region in the period when
the laser is radiating that is of greatest interest. In this paper it is proposed that this
problem be solved by using the delay of the stimulated radiation relative to the current
pulse combined with regulatjon of the pumping current in the period of normal lasing. In
accordance with this method, a square current pulse, corresponding to a prescribed energy of
the radiation pulse, is applied to the laser du thg the period of the initial delay of lasing.
In this case, by the time normal lasing arises the temperature of the active region increases
to some value corresponding to the amplitude of the pumping pulse. Then, in order to stab-
ilize the radiation frequency the pumping current must be reduced so that during the entire
lasing pulse the temperature of the active region remains constant. In what follows, the
method described above is proved mathematically.

The following assumptions were adopted in constructing the thermal model of an IL fiil:
The power dissipated in the IL is concentrated in the plane of a flat p-n junction with a
width of 2b at a depth h from the surface whose temperature is held constant {Fig. laj; the
doublie-heterojunction laser is considered to be a uniform semi-infinite solid mass with
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Fig. 1. Geometric model (a), transient characteristic {b), and time-

dependence of the temperature of the active region {c¢) of a semicon-
£ F) P - . ~ e . Fiks1 - - - 'r}\ - -

uctor injection laser: j = 2j¢ (1), 5j¢ {2), and 10j¢ (3). T, K;

parameters characteristic for t
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rium with the surrounding medium, whose temperature is t:
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f heat in a strip injection laser

Under the assumptions made above, the propagation o
is described by the two-dimensional equation of nonstationary heat conduction
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In this case the function q(t) in Eq. (1) assumes t
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The probiem (i)-(4) was solved The corresponding ex-
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pression for the average temperature of the strip To(t) = é:j T(h, y, t)dy with arbitrary func-
b
b

-+

tion j,(t) has the form
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B
. Time dependence of the pumping current (a) and radiation power {b)
esponding to the condition of constant temperature of the active region:
=1nJ; 2) 25 3) 35 4) 4. j, kKAfcm®; P, mW.

Fig. 3. FPumping current density (a), the radiation power (b}, ar

ture of the active region {(c) as a function of time under the condition of con-
tant temperature (solid lines) and with a constant pumping current (dashed
lines).
¢
c%jKUuwMLO<t<%,
3
tc t
el [ K(t—0)dt4 [ g (@) Kt —1)dul, to<t<h,
Ta (t) = f(: ft:
¢lgof K (¢ —1)dv+ { gu () K (f— ) do + (5)
0 £y
A
+J q2(T)K(t-’T)dT]» t1<t<t29
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where K (t — 1) = {1 —exp (— 4h2%2)] {2bz eri (202) —
——--—2-.—_:[1—-€Xp (—— 4b222)]} = ————1————___.__..__. (6)
7 Viaz(t—1)

We shall first study the case of a square pumping pulse, when j,{(t) = j;, t; < t < t,.
In this case, all functions on the right hand side of Eq. {3), including q,, are determined,
and the temperature Ty(t) can be calculated at any time. The results of the numerical cal-
culations for different pumping currents are presented in Fig. le. In the calculations the
initial data typical for gallium-arsenide.injection lasers were employed {2, 13]: j¢ = 500
Alcm? , V=15V, ng =0.3, h=4 pm, b=5um, L =300 um, a* = 0.08 cw’/sec, x = 0.136
Weem™* K™Y, t, = 2 nsec, &t = 1 nsec, At = 100 nsec.

It is clear from Fig. lc -that the average temperature of the strip is atzongiy unstable
in time. The heating of the active region toward the end of the radiation pulbe {t = t,)
increases with the pumping current and is equal to 0.43 K for j = 2j¢ and 1.85 K for j =

10j¢. This is substantially greater than the range of temperature variations which lead to
mode switching in gallium-arsenide lasers.
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P(t)=ndV (ja (&) —J) S (8
becomes a function of time, and the pulse energy is determined uniquely in the form of the
integral

fs
W/:EP(t)dt. (9
t1

a different valu

g o and a new energy W(j,).
We shall state the problem o
d

of j,, we obtain a new function j,{(t)
as follows: <Choose a param-
of

2
maintaining a constant temperature
n
a

h (@

; and a corresponding function Jzkt) so that the conditioi constant temperature {(7)
s satisfied and at the same time a prescribed pulse energy is achieved

We now determine the function j,(t) corres 1d1ug to the condition of constant t
ture. Using the relation (7), tuge' her with Eq (5}, we arrive at a Volterra integral equa-
tion of the first kind for the function sought j,(t):

i

r . {
JOlR@OIK(E—r)dv=[), 4L <i<h, (1D
t
where
i, 1y 1y iy
f(t):%j.K(tl’“T)dT’Jr‘ ‘ (K (¢ —1)dv ““‘]ofK(t*T)dT“J“h(T)K(Z—T) dr. (123
0 .fn 0 ty
As follows from Eq. (6), the kernel K(t — 1) of the integral equation (11) is discon-
tinuous on the diagonal t = t. To eliminate this singularity we transform Egq. (11} into an
equivalent Volterra equation of the second kind [14]:

t
g2 (1) =02 1 K (1 — ) d

92 (1) + —— S U (13)
{K(t—r)dr jK(f——r)dt
4 7
Now the difference q,{7)-q,{t) vanishes on the diagonal and the indicated singularity

vanishes.

rically by the method of quadratures {14]. The param-
eter 31, satisfying Eq. (10) was found by the method of Newtonian iterations. The values
of j, and the function j,(t) were found for different pulse energies W,.* The computational
results are presented in Figs. 2 and 3.

*Investigations of the integral equation (13) in the limit t - t, showed that the function
t, (

i
q(t) must be continuous at the point t = t;, i.e., q,{(t;) = q;(t,), and therefore j,(t,) =
ja-
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It is obvious from Fig. Z that at the moment t, the pumping current an correspundlugly
the radiation power must be relatively high. Thus for a pump energy of unly 1 aJ j; = 10j¢.
Then, according t yhe condition of constant temperature, the current and r dldt ion power
decrease in time, and in addition the curves are ste
stance must be taken into account when this method
employed.

eepest in the first 10 nsec. This circum-

of maintaining a constant temperature is
The solid lines in Fig. 3 show as a function of time the pumplug current denblty, the

radiation power, and the temperature of the IL strip with Wy, = 1 nJ. The dashed lines show

these quantities as a function of time under conditions of constant current, corresponding

to the prescribed pulse energy. One can see from the figure that for j = const the range

of variation of the temperature of the active region is equal to .51 K, while an optimal

choice of the function Jz(t) makes it possible to maintain constant the temperature of the

radiating strip.

Tirus control of the pumping current can be an effective method for stabilizing the fre-
quency of the laser radiatiom.

b and h, dimensions
resonator; T, tenperatu
conductivity; e(u),

18
u < 0 and e{u) = e
pumping pulse; tl, f
t; — ty, radiation t i 5
temperature of the ating stri 3t c ity ai ing
current demsity; j,, initial value of the pumping current density; j,{t), punping current
density in period of normal lasing; C = a?/{2xv/Tb); Mg, differential quantum efficiency;
V, direct voltage dlup across the p—n junction; and W, energy of the radiation pulse.
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