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• is shown ........ ~ that a ~ th~ur~t1~•177 constant temperature can be maintained in the 
active region of a semiconductor injection laser during the period of the radia- 
tion pulse by regulating the p~r~ping current. 

Single-frequency semiconductor injection lasers (ILS) are finding wide application in 
spectroscopy, holography, laser ranging, heterodyning, in coherent optical coupling systems, 
and other objects of quantum electronics, where stability of the radiation frequency is the 
main requirement [1-4]. It is well known that the frequency of stimulated radiation depends 
strongly on the temperature of the active region. This makes it necessaryto control the 
temperature of the radiating p-~ junction. Thus, for exmiiple, for laser amplifiers and co- 
herent optical coupling systems, where frequency stability of the order of 10 -7 is required 
for optical heterodyning [5-7], the temperature of the active region must be maintained con- 

~• K and higher Ll, 7]. stant with an accuracy of ~-~ r 

The problems of temperature control of a continuous wave IL under conditions when the 
temperature of the surrounding medimm changes were studied in [6, ~i. • oj ~- the case of a 
pulsed laser the problem of maintaining an average but not instantaneous temperature is 
usually solved. At the same time, under conditions of pulsed pmniping high-frequency tempera- 
ture waves arise in the active region, and this results in spreading of the spectral band 
and could cause switching of the predominant modes. Thus for iL based on materials such as 
GaAs a displacement by the intermodal splitting occurs when the temperature changes by 0.i- 
1K [9]; this is comparable with the amplitude of oscillations of the instantaneous tempera- 
ture of the active region. Thus for a pulsed laser, in addition to maintaining constant the 
average temperature of the laser diode, there also arises the problem of thermostatic control 
of the active region during the period of the pumping pulse. In [I0] it is shown that 
optimal control of the temperature of the active region T a of a pulsed iL can be achieved 
by applying a preceding cooling pulse from the side of the outer face of the laser diode, in 
[II] the suppression of heat waves in the active region of the iL in the two-pulse p~i~ping 
regime was investigated theoretically. 

We note that the methods of, dynamic thermostatic control studied in L• ii] do not 
make it possible to achieve the condition T a const exactly. In this connection, in r~ L I U ,  

Ii] the problems of reducing to a minimal, the standard deviation of the function Ta(t) from 
its average value over the period of the pmn~ping puise were solved. In reality, however, 
it is precisely accurate control of the temperature of the active region in the period when 
the laser is radiating that is of greatest interest, in this paper it is proposed that this 
pLou~em be solved by using the delay of the stimulated radiation relative to the current 
pulse combined with regulation of the p-~r, ping current in the period of normal lasing, in 
accordance with this method, a square current pulse, corresponding to a prescribed energy of 
the radiation pulse, is applied to the laser during the period of the initial delay of iasing. 
In this case, by the time normal iasing arises the temperature of the active region increases 
to some value corresponding to the ~ipiitude of the p~i~ping pulse. Then, in order to stab- 
ilize the radiation frequency the pu~fLping current must be reduced so that during the entire 
lasing pulse the temperature of the active region remains constant, in what follows, the 
method described above is proved mathematically. 

The following assumptions were adopted in constructing the thermal model of an iL [II]: 
The power dissipated in the IL is concentrated in the plane of a flat p-n junction with a 
width of 2b at a depth h from the surface whose temperature is held constant (Fig. la); the 
doubie-heterojunction laser is considered to be a nniform semi-infinite solid mass with 
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Fig. I. Geometric model (a), transient characteristic (b), and time- 
dependence of the temperature of the active region (c) of a semicon- 
ductor injection laser: J = ZJt ~• JJt (Z), and lOjt (J). T a, K; 
t, nsec. 

parameters characteristic for the bounding layers; the temperature dependence of the physical 
parameters is neglected; by the time the next pulse is switched on the laser reaches equiib- 
rime with the surrounding mediu/n, whose temperature is taken as the reference point. 

Under the assmnptions made above, the propagation of heat in a strip injection laser 
is described by the two-dimensional equation of nonstationary heat conduction 

Ot ] c3,v 2 F j = - -  ~ (x - -  h) [e (y + b )  - - e ( y  - -b)]  q (t), 

(i) 
T ( x ,  E, 0 ) - - O ,  T(O, V, t) = O, O < x < o o ,  - - c ~ < g < c ~ .  

in determining the intensity of the heat source q(t) the d~amics of the radiation of 
the laser and the character of the time dependence of the current must be taken into account. 
Figure ib shows an idealized transient characteristic for a laser with a square p~n~ping 
pulse (j(t) = const, 0 ~ t ~ t2). It is assented that the stimulated emission is initially 
delayed with respect to the current pulse by the time t o of the order of several nanoseconds 
[9, 12]. it is also assmned that radiation does not arise instantaneously at the moment t = 
to: Under the conditions of constant current the radiation power grows linearly during the 
time @t = t~ - t o up to the level of normal iasing. 

in accordance with the method proposed for maintaining a constant temperature we shall 
ass~im that the p~[@ing current is constant only in the period preceding normal lasing ! after 
which the pump current becomes a decreasing function of time: 

= l/1 = const, 0 ~< t ~< t~, 
i (t) tl~ (t), q < t ~t~. 

*Ax 

kz) 

In this case the function q(t) in Eq. (i) assmi~es the form 

q ( t )  = qoe ( t )  - -  qoe(t - -  to) + q~e ( t  - -  to) - -  q !e  ( t  - -  tl) + q2e ( t  - -  ta) - -  q2e (t  - -  t2), 
(3) 

where 

t - -  t o 
qo = i , v ,  q~ = ] W  - -  ~ d v  (ix - -  i t )  - - - g ~  , q~ = A (t) v - -  ~ d v  ( A  (t) - -  j , )  (4) 

is the intensity of the heat source in separate time segments [9]. 

The problem (~ �9 j-(4) was solved by the Green's function method. The corresponding ex- 

! 
i T(h, y, t)dy with arbitrary func- pression for the average temperature of the strip T~(O=~ 

--b 

tion j2(t) has the form 
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Fig. 2 ~ Fig. 3 

Fig. 2. Time dependence of the pm-nping current (a) and radiation power (b) 
corresponding to the condition of constant temperature of the active region: 
i) W 0 = I nJ; 2) 2; 3) 3; 4) 4. j, kA/cm2; P, mW. 

Fig. 3. Pumping current density (a), the radiation power (b), and the tempera- 
ture of the active region (c) as a function of time under the condition of con- 
tant temperature (solid lines) and with a constant pumping current (dashed 
lines). 

t 

Cqo S K ( t - - z ) d t ,  O ~ t ~ t o ,  
0 

to t 

[qo .~ K (t --~) dt + .! ql (~) ~ (t - -  ~) d~], to < t ~ t~, 
T,z ( t )  = o to 

to t l ] ~ Iqo.[ ~ (t - ~) d~ + ~ q~ (~)/~ (t - ~) d~ + 
tO to 

+ f q~ ('0 K (t - -  "0 d-r], t~ < t ~ t~, 

(5) 

where K (t - -  x) = [1 - - exp  ( - -  4hZzZ)l {2bz err (2bz) - -  

2 l ( 6 )  
] /~_  [1--exp (--4b~zZ)]} ;z= _l/-$.~_~ ( t _  Q 

We s h a l l  f i r s t  s t u d y  t h e  c a s e  o f  a s q u a r e  p mnlping p u l s e ,  when j z ( t )  ~ J l ,  t l r  t ~ t 2. 
i n  t h i s  c a s e ,  a l l  f u n c t i o n s  on t h e  r i g h t  h a n d  s i d e  o f  Eq. ( 5 ) ,  i n c l u d i n g  q2 ,  a r e  d e t e r m i n e d ,  
and the temperature Ta(t) can be calculated at any time. The results of the n-~-aericai cal- 
culations for different p~mping currents are presented in Fig. ic. In the calculations the 
initial data typical for gailioa~-arsenide~i~ection lasers were employed [2, 13]: Jt = 500 

of 
A/cm 2, V = 1.5 V, ~]d = 0.3, h = 4 Dm, b = 5 ~m, L = 300 ~m, a 2 = 0.08 cm~isec, < = 0.136 
W.cm-1.K -I, t o = 2 nsec, 6t = 1 nsec, At = I00 nsec. 

it is clear from Fig. Ic that the average temperature of the strip is strongly unstable 
in time. The heating of the active region toward the end of the radiation pulse (t = t 2) 
increases with the pumping current and is equal to 0.43 K for j = 2jt and 1.85 K for j = 
10jt. This is substantially greater than the range of temperature var.iations which lead to 
mode switching in gallium-arsenide lasers. 
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We now formulate the problem of maintaining a constant temperature. Let, in accordance 
with Eq. (2), a square pulse with pumping-current density j = Jl be applied to the IL in the 
period 0 < t ~ tl. By the time t I the temperature of the active region increases to the 
value i attlj, determined uniquely by the relation (~). We shall choose a form of the current 
j2(t) in the segment t I < t ~ t 2 such that the average temperature of the strip is constant: 

T~ (t) = T= (q) = const, G < t ~  t2. ( 7 )  

in this case the radiation power 

P (t) ~ -  qdV (j~ (t) - -  Jr) S (8) 

becomes a function of time, and the pulse energy is determined uniquely in the form of the 
integral 

~v = ~ P (0 dr. 
il 

(9) 

Taking a different value of Jl, we obtain a new function j2(t) and a new energy W(jl). 
We shall state the problem of maintaining a constant temperature as fol&ows: Choose a param- 
eter Jl and a corresponding function j2(t) so that the condition of constant temperature (7) 
is satisfied and at the same time a prescribed puise energy is achieved 

W(j~) = Wo. (10) 

We now determine the function j2(t) corresponding to the condition of constant tempera- 
ture. Using the relation (7), together with Eq. L J), we arrive at a Volterra integral equa- 
tion of the first kind for the function sought j2(t): 

t 

i q'~ []2 (17)] K (t  - -  T) d17 = f (t) ,  t I < ~ ~ t2, 
tl 

(11) 

where 

to fl Io fl 

f(t)=q~176 ( ] . 2 )  
o /,~ o to 

As follows from Eq. (6), the kernel K(t- z) of the integral equation r~,~ ~• is discon- 
tinuous on the ulago~ar ...... t = ~. ~-~o eliminate this Singularity we transform Eq. (II) into an 
equivalent Volterra equation of the second kind [14]: 

t 

.!" [q~ ('0 --q~ (t)] K (t - -  -~) d-~ 
q~ (t) + ~, = f (t) ( i 3 )  

t l 

f' K (t - -  z) d~ j" K (~ - -  ~) dz ] 
tz ! i  

Now the difference q2(z)-q2(t) vanishes on the diagonal and the indicated Singularity 
vanishes. 

The equation (13) was solved nma~ericaily by the method of quadratures [14]. The param- 
eter Jl, satisfying Eq. (i0), was found by the method of Newtonian iterations. The values 
of J i and the function " ~ 32~t) were found for different pulse energies W0.* The computational 
results are presented in Figs. 2 and 3. 

*Investigations of the integral equation (13) in the limit t * t I showed that the function 
q(t) must be continuous at the point t = tl, i.e., q2(tl) = q1(tl), and therefore j2(tl) = 
Jl. 
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it is obvious from Fig. 2 that at the moment t I the pumping current and correspondingly 
the radiation power must be relatively high. Thus for a pump energy of only 1 nJ Jl = 10jt. 
Then, according to the condition of constant temperature, the current and radiation power 
decrease in time, and in addition the curves are steepest in the first i0 nsec. This circum- 
stance must be taken into account when this method of maintaining a constant temperature is 
employed. 

The solid lines in Fig. 3 show as a function of time the pumping current density, the 
radiation power, and the temperature of the iL strip with W 0 = 1 nJ. The dashed lines show 
these quantities as a function of time under conditions of constant current, corresponding 
to the prescribed pulse energy�9 One can see from the figure that for j = const the range 
Of variation of the temperature of the active region is equal to 0.51 K, while an optimal 
choice of the function j2(t) makes it possible to maintain constant the temperature of the 
radiating strip�9 

Thus control of the p'~nping current can be an effective method for stabilizing the fre- 
quency of the laser radiation�9 

~7 ,  m*, , ~  %T 

b and h, dimensions of the laser in accordance with Fig. la; S = 2bL; L, length of the 
resonator; T, temperature; x and y, coordinates; t, time; a 2, thermal diffusivity; <, thermal 
conductivity; 6(u), a Dirac 6-function; e(u), Heaviside unit step function (e(u) = 0 for 
u < 0 and e(u) = 1 for u e 0)~ to, delay time of the radiation pulse with respect to the 
pumping pulse; tz, moment of onset of normal iasing; t2, width of the p-~iping pulse; A~ = 
t I - to, radiation front; At = t 2 - tl, width of the radiation pulse; T a) mean integral 
temperature of the radiating strip; Jt and j, threshold current density and the p~i~ping 
current density; Jl, initial value of the pumping current density; j2(t), punping current 
density in period of~normai lasing; C = a~ILZKV~D); i]~, differential quantum efficiency; 
V, direct voltage drop across the p~i junction; and W, energy of the radiation pulse. 
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